Search results for "Monadic predicate calculus"

showing 5 items of 5 documents

Monadic second-order logic over pictures and recognizability by tiling systems

1994

We show that a set of pictures (rectangular arrays of symbols) is recognized by a finite tiling system if and only if it is definable in existential monadic second-order logic. As a consequence, finite tiling systems constitute a notion of recognizability over two-dimensional inputs which at the same time generalizes finite-state recognizability over strings and matches a natural logic. The proof is based on the Ehrenfeucht-FraIsse technique for first-order logic and an implementation of “threshold counting” within tiling systems.

Predicate logicDiscrete mathematicsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputer Science::Logic in Computer ScienceSubstructural logicSecond-order logicMultimodal logicDynamic logic (modal logic)Intermediate logicHigher-order logicComputer Science::Formal Languages and Automata TheoryMonadic predicate calculusMathematics
researchProduct

The Monadic Quantifier Alternation Hierarchy over Grids and Graphs

2002

AbstractThe monadic second-order quantifier alternation hierarchy over the class of finite graphs is shown to be strict. The proof is based on automata theoretic ideas and starts from a restricted class of graph-like structures, namely finite two-dimensional grids. Considering grids where the width is a function of the height, we prove that the difference between the levels k+1 and k of the monadic hierarchy is witnessed by a set of grids where this function is (k+1)-fold exponential. We then transfer the hierarchy result to the class of directed (or undirected) graphs, using an encoding technique called strong reduction. It is notable that one can obtain sets of graphs which occur arbitrar…

Discrete mathematicsPolynomial hierarchyDirected graphMonadic predicate calculusAutomatonTheoretical Computer ScienceComputer Science ApplicationsCombinatoricsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputational Theory and MathematicsAnalytical hierarchyComplexity classAutomata theoryGraph propertyMathematicsInformation SystemsInformation and Computation
researchProduct

Local Normal Forms for First-Order Logic with Applications to Games and Automata

1999

Building on work of Gaifman [Gai82] it is shown that every first-order formula is logically equivalent to a formula of the form ∃ x_1,...,x_l, \forall y, φ where φ is r-local around y, i.e. quantification in φ is restricted to elements of the universe of distance at most r from y. \par From this and related normal forms, variants of the Ehrenfeucht game for first-order and existential monadic second-order logic are developed that restrict the possible strategies for the spoiler, one of the two players. This makes proofs of the existence of a winning strategy for the duplicator, the other player, easier and can thus simplify inexpressibility proofs. \par As another application, automata mode…

General Computer ScienceLogical equivalenceautomataComputer scienceOf the formMathematical proofMonadic predicate calculusTheoretical Computer ScienceCombinatoricslocalityDeterministic automatonDiscrete Mathematics and CombinatoricsMathematicsgamesDiscrete mathematicsPredicate logiclcsh:MathematicsLocalityAtomic formulaexistential monadic second-order logiclcsh:QA1-939AutomatonFirst-order logic[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESAutomata theoryFirst-order logicDiscrete Mathematics & Theoretical Computer Science
researchProduct

Monadic Second-Order Logic over Rectangular Pictures and Recognizability by Tiling Systems

1996

Abstract It is shown that a set of pictures (rectangular arrays of symbols) is recognized by a finite tiling system iff it is definable in existential monadic second-order logic. As a consequence, finite tiling systems constitute a notion of recognizability over two-dimensional inputs which at the same time generalizes finite-state recognizability over strings and also matches a natural logic. The proof is based on the Ehrenfeucht–Fraisse technique for first-order logic and an implementation of “threshold counting” within tiling systems.

Predicate logicMonadic second-order logicDiscrete mathematicsNatural logicIntermediate logicHigher-order logicMonadic predicate calculusComputer Science ApplicationsTheoretical Computer ScienceMathematics::LogicTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputational Theory and MathematicsComputer Science::Logic in Computer ScienceMany-valued logicDynamic logic (modal logic)Computer Science::Formal Languages and Automata TheoryInformation SystemsMathematicsInformation and Computation
researchProduct

The monadic quantifier alternation hierarchy over grids and pictures

1998

The subject of this paper is the expressive power of monadic second-order logic over two-dimensional grids. We give a new, self-contained game-theoretical proof of the nonexpressibility results of Matz and Thomas. As we show, this implies the strictness of the monadic second-order quantifier alternation hierarchy over grids.

Discrete mathematicsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESFinite-state machineComputational complexity theoryHierarchy (mathematics)Proof theoryComputer Science::Logic in Computer ScienceQuantifier (linguistics)Subject (grammar)Alternation (formal language theory)Monadic predicate calculusMathematics
researchProduct